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Spectral Fluctuations and Zeta Functions 
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La place n'est point de celles que l'on puisse emporter de haute lutte; il faut l'at- 
taquer successivement sur toute sorte de points et se contenter d'avantages par- 
tiels [J. Hadamard, O~uvres, IV (CNRS, 1968), p. 1954] 
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We study theoretically and numerically the role of the fluctuations of eigenvalue 
spectra {~n} in a particular analytical continuation process applied to the 
(generalized) zeta function Z(s) - Z , , / ~ "  for s large and positive. A particularly 
interesting example is the spectrum of the Laplacian on a triangular domain 
which tessellates a compact surface of constant negative curvature (of genus 
two). We indeed find that the fluctuations restrict the abscissa of convergence, 
and also affect the rate of convergence. This then initiates a new approach to the 
exploration of spectral fluctuations through the convergence of analytical con- 
tinuation processes. 

KEY WORDS: Quantum chaos; spectral fluctuations; zeta function; trace 
identities; billiards. 

1. I N T R O D U C T I O N  

A sel f -adjo in t  o p e r a t o r  is completely  c h a r a c t e r i z e d  by its e igenva lues  and  

e igenfunc t ions .  H o w e v e r ,  ve ry  of ten  one  l imits  one ' s  a t t e n t i o n  to the  col lec-  

t ion  of  e igenva lues ,  to  its spec t rum.  F o r  example ,  in q u a n t u m  physics  the  

s p e c t r u m  of  the  H a m i l t o n i a n  o p e r a t o r  gives the  a l l o w e d  ene rgy  va lues  of  
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the dynamical system described by this Hamiltonian. In acoustics the nor- 
mal mode frequencies furnish the frequencies generated by a musical 
instrument, such as a pipe or a drum. The latter problem, in turn, leads to 
the general mathematical question of determining the spectrum of the 
Laplacian on closed surfaces with or without boundaries. (1) Associated 
with this is the inverse problem, the possible reconstruction of the vibrating 
surface through the knowledge of its spectrum, expressed once by Mark 
Kac (2) by the pregnant question, "Can one hear the shape of a drum?" To 
honor his memory we shall address ourselves briefly to a ramification of 
this question and study a possible characterization of the spectral fluc- 
tuations: "How noisy is your drum?" The motivation comes from quantum 
dynamics. Consider a classical Hamiltonian system exhibiting chaotic 
behavior in the phase space (being, say, Bernoullian)/3) Upon quan- 
tization, let the quantum Hamiltonian have a discrete spectrum. Can one 
tell, looking at this spectrum alone, that in the classical limit the motion of 
the system is chaotic? Conversely, can one deduce from the chaotic proper- 
ties of the classical motion particular features of the quantal spectrum? 
This problem is largely unsolved and is under active investigation. (4) In 
particular, it has been conjectured (5) that the fluctuations of the spectrum 
around its mean distribution yield such a criterion. Actually, numerical 
experimentation indicates that these fluctuations are much diminished (in a 
well-defined sense) if the associated classical Hamiltonian is chaotic. 

Our present purpose here is the discussion of a conjecture concerned 
with a convenient characterization of the fluctuations in the spectrum. (6) 

2. SPECTRAL STORAGE 

Consider the Hamiltonian O@ and its spectrum of eigenvalues 
#o,#1 ..... # ..... ordered in an increasing sequence. (If degeneracies are 
present, the eigenvalues are repeated according to their multiplicities. The 
zero of energy is so chosen that #0 > 0.) 

There are many different ways to store this set of numbers by 
associating functions with the set. Such functions are the generating 
function g(z) = 52, #nz n, the partition function O(t) -= Z ,  e-'~", the trace of 
Green's function R(#)=~2n[1 / (# -#n) ] ,  the Fredholm determinant 
D ( # ) = I ] , , ( 1 - # / # n ) ,  the zeta function Z ( s ) = Z n  #,]-s, etc. Of these, the 
generating function is little used, since it cannot conveniently be expressed 
as the trace of an operator function of O@. The partition function is the 
trace of the heat operator exp(-to@); the others can be thought of as dif- 
ferent integral transforms of the heat operator; for example, the resolvent is 
its Laplace transform, while the zeta function is proportional to its Mellin 
transform. Different integral transforms stress different properties of the 
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spectrum through the analytical dependence of the transform on its 
variable. For  this reason several of these transforms must be investigated to 
obtain a more detailed comprehension of the spectrum. In this note we 
concentrate on one particular case, the zeta function, since we believe that 
the latter is particularly suitable to study the fluctuation properties of the 
spectrum through its analyticity properties. In fact, we surmise that the 
process of analytical continuation of Z(s), based on the defining series 
Z2=1 g2  ~ (with s or its real part  being large and positive) will crucially 
depend on the nature of the fluctuations of the set #,,. 

To explain our beliefs and motivation we illustrate on Riemann's zeta 
function ~(s) how the process of analytical continuation can be influenced 
by the presence or absence of fluctuations [-the latter being the case for 
~(s)]. 

3. T H E  E X A M P L E  OF R I E M A N N ' S  ZETA F U N C T I O N  

Consider the equidistant spectrum #n = n, with n = 1, 2,..., for example, 
the spectrum of the harmonic oscillator with a shift + 1/2. In this case 

Z ( s ) =  ~ n " ~ ( s )  (1) 
n =  1 

where if(s) is Riemann's zeta function, which can also be written as 

1 io ~ t s -1  dt 
~(~)=~ -U-1 (2) 

Both definitions of ~(s) converge for Re s > 1. (7) A central question in 
the theory of the zeta function is to find an effective analytical extension of 
either formula to Re s ~ 1. Two methods are in use. 

(a) For the series representation the well-known trick is to express the 
tail of the series (which diverges for s ~< 1) in a form where analytical con- 
tinuation is obvious. We then use the Euler Maclaurin summation 
formula (8) to write Z ~  n -s as S~ n-~ dn, amended by correction terms 
involving the Bernoulli numbers [see Eq. (7)], 

N 1-s 1 
n - ' -  ~-~N " 

n = N  1 - - S  

oo B2 m 
+ ~ (_.~m~v.s(s+l). . . (s+2m_2)N-,  2,,,+1 

m = l -  - 

(3) 

(this being understood as an asymptotic expansion for N ~ oo). 

8 2 2 / 4 6 / 5 - 6 - 1 8  
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Hence, we also have for all M, and Re s > 1, 

IN~_ I S-- ,  Z N1 s 1N-~' ~(s)= lim n s+____;_+~ 
N ~ o o  n 1 

M B 2  m , ,  
+ ~ 7x__~, ,s ts+l) . . . (s+2m_2)N-~.  2m+1 (4) 

J m = 1 [zm): 

The advantage of this new expression is that the limit N--, oo con- 
tinues to exist as long as Re s > 2 M -  1, and being analytic in s, it does give 
a numerical representation of the analytical continuation of ~(s), which 
holds for arbitrary negative s provided enough terms are included, i.e., for 
2 M >  - 1  - s .  In fact Eq. (4) is one of the classical methods to compute 
numerically ~(s) for a variety of purposes. We note, however, that as s is 
made more and more negative, ~(s) is computed as the difference of two 
increasingly larger quantities; this property will prove most useful later. 
Also, Eq. (4) exhibits the well-known polar singularity 1/(s -1)  at s =  ! 
hence can be used to evaluate the finite part of ~(s) at s = 1, as 

FP~(1 )= l im  ~ ( s ) -  1 = lim - - l o g N  =7  (5) 
s ~ l  N ~ c o  n l n 

(this is Euler's constant). Equation (4) can also be differentiated to yield, 
for instance, 

1 ] 1 
~'(0)= lim ( - l o g n ) + N ( l o g N - 1 ) + ~ l o g N  = - ~ l o g 2 ~  (6) 

N ~ o o  n 1 

where we have used Stirling's formula for log N!. 

(b) As for the integral representation of ~(s), one method for 
analytical continuation uses the asymptotic expansion of the integrand for 
t ~ 0  +, 

1 ~ Bn t n- 1 
e t _ l = , , = o - ~  -. (7) 

where B, are the Bernoulli numbers (an expansion much used in evaluating 
integrals over the Planck distribution). 

The expansion (7) can immediately be used for if(s). For the general 
Z(s) function a more involved procedure is required, since the integral 
expression corresponding to (2) is not quite the same. Consequently, here, 
too, we proceed as in the general case. We write 

~(s) = ~ ( s ) / r ( s )  (8) 
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with 

tl(S ) = O ( t )  t s - 1  dt  (9) 

In the present case O ( t )  is simply ( e ' - 1 )  -1, while in general O(t)--  
Z ~  e-t~".  Both admit an asymptotic expansion as t ~ 0 +. Equation (7) is 
exceptional in two respects: (i) it gives a convergent expansion, (ii) it 
proceeds in integral powers. In general (11 

O ( t )  "~ c~t  ~ + c~t  ~ + c.~t 7 + " "  (lOa) 

with 

~ < f l < 7 <  ' "  --* +0% .~<0 (10b) 

If t ~ +0% O ( t )  is exponentially decreasing. 
We now study the limit of convergence of t/(s) as s decreases. From 

Eq. (10), O(t) diverges as t ~ for small t. Hence, from Eq. (9) we find that 
limit to be Re s = -c~. However, we can extend the region of convergence, 
provided the series (10a) can be differentiated term by term, as is usually 
the case. Integrate by parts in (9), 

fO a ts + ~ t/(s) = -- [-t-~O(t)] ' dt  ( t l )  
s+c~ 

We now observe that the leading term c~ is suppressed by the differen- 
tiation; thus, the limit of convergence of this new integral becomes 
Re s = -f i ,  providing the analytical extension of t/(s) up to that point. 

In addition we see from (11) that q(s) has a pole at s =  -c~, where the 
residue can be computed by reversing the partial integration, 

Re s~= _~ r/(s) = - [ t - ~ O ( t ) ]  ' d t  = t s O ( t )  = c~ (12) 
t=0 

Repeat now the same idea using 

r/(S) = + f  [ l - f l + a + l O l ( t ) ]  ' 
t~+~ 

(s +/~)(s + ~) 
dt  (13) 

with 01 ( 0=  [ t - ~ O ( t ) ]  ' [which behaves for small t as c~( f l -c  0 t ' - ~  1]. 
The resulting integral converges now up to Re s = - ~ ,  providing an 
analytical extension up to this point and exhibiting a second pole at 
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s = -f l ,  with residue ce. Continuing this process, we construct rl(s) as a 
meromorphic function in the whole s plane with poles exclusively at s = -c~, 
- f i ,  - 7 ,  etc., having there the residues co, c~, c~, etc. 

Consequently, Z ( s )=  q(s)/F(s) is also a meromorphic function in the 
whole plane, with analyticity properties determined by the interplay of the 
poles of r/(s) and F(s). The latter has a pole at every negative integer and 
zero; this either will give a zero of Z(s) or will cancel those poles of t/(s) 
that are associated with integral exponents in the expansion (10). A 
remaining pole generated by a nonintegral or negative exponent, say 6, has 
the residue c~/F(-(5). 

The cancellations at the negative integers ( - n )  and at zero lead to the 
infinite sequence of trace identities (91 

Z ( - n ) - ( - 1 ) ' c . n [ ,  n = 0 ,  1,2 .... (14) 

where by convention c. = 0 if n does not appear in the sequence cr fi, 7 ..... 
We now apply these results to Riemann's zeta function ~(s). The only 

surviving pole of ~(s) is at s -- 1 with the residue B o = 1; on the other hand, 
the trace identities specify 

~ ( - n )  = ( -  1 )" B,  + 1/(n + 1) (15) 

Since B ~ = 0  for odd k >  1, ~ ( - 2 n ) = 0  [except ~(0)= -1 /2 ] .  

(c) Another way of continuing ~(s) to the whole region Re s < 0 at 
once is to use the functional equation for ~(s). This method, however, is not 
available for general zeta functions, since it is the consequence of the 
arithmetical properties of ~(s). Like the distribution of the complex zeros of 
~(s), the object of Riemann's hypothesis, etc., it reflects the regularity and 
exceptional character of an equidistant spectrum. Arithmetical properties 
are thus not expected to persist for a more general spectrum; therefore, it is 
unlikely that this alternative method of analytical continuation will have a 
counterpart for a generic spectrum. 

4. T H E  G E N E R A L  ZETA F U N C T I O N  Z(s)  

After this preparation, we consider the general situation with O(t)= 
Z e -  tm and 

fo , _  1 O( t )  t" 1 dt (16) Z ( s )  = ~. r(s) 
n = O  

provided s or its real part is positive and large enough. The last equality is 
the analogue of Eqs. (8) and (9), as can be verified using the definition of 
O(t) and integrating term by term. 
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Continuing with the analogy, we now attempt in two different ways 
the analytical continuation of Z(s) to smaller, and eventually negative s (or 
Re s) values. 

The continuation using the integral representation in (16) was already 
treated in Section 3 and can be used here provided that an asymptotic 
expansion like (10) exists for O(t) for small t; one of the results of that 
procedure has been the set of trace identities (14), Z ( - n )  = ( - 1 ) "  c~n!. 

The alternative method for analytical continuation starts with the 
series representation Z(s )=  52/~,," and its transcription using the Euler- 
Maclaurin summation formula analogously to Eqs. (3) and (4) for ~(s). 
Here, too, we try to rewrite the tail of the series in a form where analytical 
continuation is transparent. Formally, the general Euler-Maclaurin sum- 
mation formula gives ~s) 

I.t2 s= #(n) S dn-k--~ #N" 
n = N  N 

,n= 1 ~ k~nn/ (17) 

However, we now must observe that while the left-hand side is completely 
determined by the eigenvalue sequence/~,, the right-hand side requires the 
choice of a smooth function #(n) of the continuous index n, which replaces 
the discrete eigenvalue sequence #,  in some suitable manner. In particular, 
the use of the Euler-Maclaurin summation formula (17) implies a 
smoothness, such that the derivatives (d/dn) 2m- i #(n) s should decay to 0 
as n --, oo; this precludes oscillations of #(n) for large values of n. This con- 
dition may then prohibit a function #(n) that passes exactly through the 
eigenvalue sequence at all integer values of n, a prohibition giving rise to 
inevitable differences between #(n) and #,,. It is then natural to define the 
spectral fluctuations through the deviation of the exact sequence #, from a 
function/~(n) that is sufficiently smooth in the above sense. Since, in prin- 
ciple, many such smooth functions are conceivable, we must now make a 
choice. It seems, however, that only one function #(n) is available in prac- 
tice and even that is only asymptotically specified, through the use of the 
Weyl formula with corrections to all orders. This expression describes the 
asymptotic distribution of eigenvalues as 

ca~i ~ ~+ c~ c~ ~ ~+-. .  (18) 
r(f-- 

This W(#) approximates the spectral staircase function N(/O (which counts 
the number of levels below #) through a smoothing operation followed by 



1074 Balazs, Schmit,  and Voros 

an asymptotic expansion for large p. See Ref. 6 and Appendix A, where the 
geometrical interpretation of the coefficients is also given. (Although there 
is no unique choice of the smoothing, the asymptoticity of the expansion 
obliterates this ambiguity.) 

The Weyl function W(#) naturally defines a continuous function #(n) 
by solving the following equation for p: 

n + � 8 9  WOO (19) 

We now motivate the appearance of the term 1/2 in this equation. 
Define a sequence #;, #'1, #~ .... by solving this equation for integral n, and 
consider the spectral staircase for this sequence #'n. By construction, W(#) 
is the best smooth approximation to this staircase, intercepting each vertical 
step at its midpoint; altering 1/2 to any other value damages this property. 

If the problem is one-dimensional, the term 1/2 also emerges inevitably 
from the Bohr-Sommerfeld quantization condition, since in this case W(/~) 
is (1/2=)~pdq to lowest order. We must stress, however, that although 
Eq. (19) can be used as a quantization condition in one dimension (being 
equivalent to the Bohr-Sommerfeld rule), this is no longer true in higher 
dimensions. Thus, Eq. (19) cannot be used to predict individual eigenvalues 
/tn, precisely because the deviations (/~n-/tin) will be in general quite large, 
as is indeed shown by numerical experiments. However, the same 
numerical experiments still show that the best average agreement between 
the exact staircase and the smooth curve given by Eq. (19) actually takes 
place through the use of the term 1/2. 

We then insert into the Euler-Maclaurin formula, Eq.(17), the 
function #(n) obtained from Eq. (19), resulting in 

#2~ = d W ( # )  + -~ l~Tv s 
/ 1 =  N N 

B2m ( d 
1 t I = # N  

- _ I ol 

~= , ~ \-d--# / 

Hence we obtain the basic continuation formula as 

Z(s)  :, 2~oo 
N 1 1 #-s  

t z = O  N 

,.,=, (2m)! \ g w J  la~ . = w  

We now discuss the relationship implied here by the sign ~.  

(21) 
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Consider for a moment the one-dimensional harmonic oscillator. In 
this case Eq. (19) gives the exact eigenvalues, and thus, #n=~t',; no fluc- 
tuations exist in the spectrum and one can proceed as with Riemann's zeta 
function. Then the right-hand side of (21) is an asymptotic expansion in 
powers of 1IN. We truncate the series at M, far enough (depending on s) to 
make the rest vanish as N ~ oo. Then this limit is independent of M and 
gives the correct numerical value of the analytical continuation of Z(s). 

For  a more general but still one-dimensional situation, the Bohr-  
Sommerfeld quantization condition states that #~ ~/~'n asymptotically to all 
orders for large n; thus, the fluctuations are still absent and the same 
results ensue. (1~ Consequently, in the one-dimensional case the analytical 
continuation can be performed without further ado by taking the limit 
N ~  oo in Eq. (21). 

In more than one dimension, however, the situation can be quite dif- 
ferent. Since now fluctuations in the spectral distribution will arise, neither 
the convergence of the right-hand side of (21) (as N ~ oo) nor its equality 
to be left-hand side can be taken for granted, except within the region 
R e s > - ~ .  (Here the defining series Z # ~ "  converges anyway, and the 
Euler-Maclaurin correction terms are used only to accelerate the numerical 
convergence.) 

We notice that if the convergence of Eq. (21) persists as s decreases 
beyond the abscissa of convergence of the series Z / 6 %  this basically arises 
through the cancellation of the partial sum (Z  u - I  ~t~s+�89 s) with 
~,,ul ~-s dW(l~). Both quantities increase much faster than Z(s) itself as s 
decreases, making the cancellation process increasingly more sensitive to 
spectral fluctuations. 

Let the fluctuation be 6,u u .  Then the value of the partial sum is essen- 
tially changed by the variation of the last term, which is of the order of 
--S#N s-I  6#N. The integral will change because of the variation in the 
lower limit, giving a change ]~N s (~W(IIN). Since in two dimensions W(I~N) 
grows linearly (and in higher dimensions even faster), we see that (a) the 
spectral fluctuations produce an effect in the integral term that is larger by 
at least a factor #x, (b) this effect, in turn, grows exponentially as s 
decreases. Thus, the nature of the putative convergence as a function of s 
will reflect the nature and size of the spectral fluctuations. In particular, the 
following options are present: 

(a) The process cannot be made to converge at all. 

(b) The process converges up to a natural abscissa of convergence so 
and diverges for Re s ~< s o. In this situation the location of So gives 
a natural measure of the fluctuations' size. 

(c) The process converges for all s. 
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In addition, further refinements can aid us to extract more information 
about the fluctuations. Where convergence is actually achieved, the rate of  
convergence can still be used to measure the extent of the spectral fluc- 
tuations. If convergence is not achieved, two possibilities can occur. The 
Euler-Maclaurin method can be improved by some regularization (Cesaro 
summation, Gaussian smoothing, etc.), or an altogether different method 
must be invented [for example, the discovery of the functional equation for 
~(s)]. 

The nature of the convergence for s = 0  as N--*oe in Eq.(21) is 
particularly revealing. The trace identity gives the exact value Co for Z(0). 
Taking now the difference of the two sides of Eq. (21) at s = 0, we obtain 

1 Co - (N + 1 / 2 ) -  # - "  dW(it) (22) 
N _ls~O 

where on the left-hand side the term N comes from the sum, while the 
correction terms containing B2m are omitted, since they tend to zero as 
s--* 0. We now show that Co minus the limit of the integral is in fact the 
Weyl function W(#) of Eq. (18). Insert (18) in the integral for large s, 
evaluate the integral term by term; letting now s tend to zero, we find 
precisely W(#N)--Co; finally, the difference of the two sides of Eq. (21) at 
s = 0 simplifies to 

N--I  ~/~~176 ~ s=O Z ( s ) -  2 #~-s+ �89  s dW(# )  = W ( # N ) - ( N + � 8 9  (23) 
n=0 N 

Consequently, the presence or absence of  convergence at s = 0 monitors 
the deviation of  the actual distribution of  eigenvalues f rom the one given by 
w(u). 

In the next section we illuminate this discussion by numerical exam- 
ples. 

5. THE  ROLE OF F L U C T U A T I O N S  IN T H E  
C O N T I N U A T I O N  P R O C E S S  

In the previous sections we outlined the following idea. One defines 
Z(s) as a power series for real s > -c~ and uses the Euler-Maclaurin for- 
mula to at tempt an analytical continuation for s < - ~ .  The surmise is that 
the success of this continuation process depends on the nature of the spec- 
tral fluctuations, and thus can be used for the characterization of the latter. 

Instead of existence theorems, we now give some examples. As already 
mentioned, the one-dimensional harmonic oscillator spectrum (which is 
completely uniform, hence has no fluctuations at all) leads to Riemann's 
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zeta function, where this continuation process indeed extends the function 
for any s. What happens, however, if fluctuations are present? 

Consider the spectrum of the Laplacian on the sphere, which leads to 
the spectrum l(1 + 1) with the multiplicity 2l+ 1 for l =  0, 1, 2, 3 ..... In this 
case the original series Z(s) is given by 

[1  1 I I 1  ~ ]  Zl(s)= ~ + . . .  + ~  + g ~ + . . . +  + .  

3 times 

+ 1 ~ , +  + + .. 
(2 l+  1) times 

It is important to observe that (a) the zero eigenvalue is omitted (to avoid 
an obvious divergence), and (b) the terms are enumerated explicitly in 
order to apply the analytical extension scheme to the original series at it 
stands and not to any particular rearrangement of it (since such a 
rearrangement scheme is not available in general). In fact we must stress 
that the inclusion of a particular rearrangement leads in principle to a new 
analytical extension scheme, and may indeed be needed to generate an 
analytical extension or improve an already existing one. For example, in 
the present case we may replace each set of identical terms with one term 
multiplied by a degeneracy factor, such as 

Z2(s)= ~ (2l+ 1) /[ l ( l+ 1)]" 
/ = l  

In this way we have telescoped many terms into one, and reduced thereby 
the fluctuations. In fact, the general term of Z2(s) for large values of l 
behaves like the series for 2{(2s-  1 ); hence, the Euler-Maclaurin extension 
scheme is the best possible one for this new starting series Z2(s) [-since it is 
the best one for ~(s)]. The difference between Zl(s ) and Zz(s ) resides in the 
large fluctuations engendered by enumerating in Z 1 the identical terms one 
by one. The staircase function N(#), which counts the number of eigen- 
values having value less than #, jumps by 2 l+  1 whenever /~ is l ( l+ 1). 
These jumps measure the size of the fluctuations around the smooth curve 
that connects the midpoints of the steps, and they increase as the square 
root of the eigenvalues. Consequently, in the Euler Maclaurin continuation 
[Eq. (21)] applied to the series Z1, the partial sum Z u #~-s will fluctuate as 
/.z~2//~v, and we expect the limit N--+ oo to exist only for s > 1/2. Thus, the 
method still provides an extension from s > 1, but only for an s > 1/2. An 
extreme case is furnished by the sequence #n = 2, 4, 4, 8, 8, 8, 8 .... (i.e., the 
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set 2 t, with each term repeated 2 t 1 times). Here, the fluctuations are of the 
order #n, and the Euler-Maclaurin method applied to this series provides 
no analytical extension at all for s ~ 1. (The latter example is only used to 
show the possible failure of the extension scheme; we know of no 
Hamiltonian with this sequence of eigenvalues). 

We now apply these observations to multidimensional, separable 
problems. Here the original definition of the zeta function uses an 
enumeration of the eigenvalues according to increasing order, which 
implies large spectral fluctuations of the order ~t~/2. (~1) On the other hand, it 
is also clear that the natural enumeration should proceed according to the 
quantum numbers generated by the Bohr-Sommerfeld quantization rules 
applied to each degree of freedom. This results in a particular 
rearrangement of the original series, which suppresses these fluctuations. 

6. P S E U D O S P H E R I C A L  B I L L I A R D S  

It has been conjectured that the nature of spectral fluctuations in a 
quantum system may reflect the chaotic nature of the corresponding 
classical motion/5/ The evidence for this conjecture rests entirely on 
numerical studies, which have mostly been carried out on plane Euclidean 
billiards. (In fact, we know of no simple model in which proven chaoticity 
is generated by nonsingular external forces.) A Euclidean billiard is a boun- 
ded plane domain in which the classical motion is the free motion of a 
point mass with specular reflections at the boundary, while the quantum 
Hamiltonian is defined as the negative of the Laplacian inside the domain, 
with Dirichlet conditions (for instance) on the boundary. The com- 
putational advantage of these models resides in the fact that the motion is 
free between reflections; this means, however, that all interesting dynamical 
effects arise from the boundary terms of the Hamiltonian, which are 
singular. This persists in the quantum theory as well, where the discrete 
spectrum is entirely generated by the boundary conditions. 

Depending on the shape of the domain, the classical motion in a 
billiard can range from separable (e.g., the circular billiard) to chaotic (e.g., 
the stadium). (4'5) It has then been found numerically that the quantal spec- 
tra of those billiards that are classically chaotic exhibit different features 
from the others. In particular, the statistics of nearest neighbor spacings is 
Poissonian if the system is separable, implying the predominance of small 
separations. In examples that are classically chaotic, this preference for 
small separations is replaced by a preference for large separations, often 
referred to as "level repulsion"; in fact, these statistics seem to follow the 
ones obtained in random matrix theories. (5) The main qualitative effect of 
this property appears to be a reduction in the fluctuations of the levels 
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around their mean distribution. As yet, it is entirely unclear from the 
theoretical point of view why this should be the case. 

In dynamical systems, the features responsible for the generation of 
chaoticity do not reside entirely in the boundary. We turn now to models 
in which the causes of classical chaoticity are more evenly distributed. The 
free, or geodesic, motion on a surface of negative curvature is exponentially 
separating, thus containing one of  the basic ingredients of chaoticity. The 
quantum Hamiltonian is simply the negative of the Laplace-Beltrami 
operator. The other major ingredient for chaoticity is the compactness of the 
phase space; this we can achieve either by generalized periodicity conditions 
or by cutting out a portion of the surface and using it as a billiard, 
attaching suitable boundary conditions to the edges. In the simplest case, 
we take the negative curvature constant (equal to - 1  if we choose the 
length unit appropriately), introducing thereby pseudospherical billiards36) 
(These can be pictured as portions of the familiar Poincar6 upper half- 
plane or of the Poincar6 disk, where the geodesics are arcs of circles or 
straight line segments.) 

However, we must stress that far from all pseudospherical billiards are 
chaotic; for example, convex edges may refocus the exponentially divergent 
trajectories; this is immediately visible for a circular billiard, which is 
separable in the Poincar6 disk variables and hence is certainly not chaotic. 

The pseudospherical billiards with geodesic edges (the polygonal 
billiards) may be chaotic. In addition, these billiards may or may not 
tessellate the full Poincar6 surface under repeated reflections across the 
edges (here reflections are realized as inversions around the geodesic 
edges). The tessellating polygonal billiards have desirable features: (a) they 
are certainly chaotic classically, (b) their quantal spectrum is in a deep 
relationship with the classical periodic orbits, exhibited by SeIberg's trace 
formula. The latter in particular provides us at once with the totality of the 
expansion coefficients ca needed to describe the analytical structure of 
Z(s). ~6) In the Selberg trace formula, however, it is not the Laplace- 
Beltrami operator that appears naturally, but the combination ( - A -  1/4); 
for this reason it is convenient to choose our sequence {#,,} as the eigen- 
values of this operator, and we shall do that; for a singly connected billiard 
with Dirichlet boundary conditions these eigenvalues are all positive. (~2~ 
The Selberg trace formula for a tessellating billiard with the same boundary 
conditions then yields the following expression for the partition function: 

E( ')t O ( t ) = ~ e  '~"=Trexp A + ~  t 
n 

+C--1/2+ cnt" (24) 
t ~ -  n=O 
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with 

Area 
c i -  4g (25a) 

C 1/2 
-Circumference 

( ' )  Area 
- -  m r  co 48x +2-4 ,~} 

(25b) 

(25c) 

and in general 

Area 
e,, - 4~ 

(2n)! 

n! 

- -  ( 1 - 2  -1 2.) B2-+2 
( n+  1)! 

- - -  ~ (2p)! ( 2 q + 2 t !  2 mr p + q = n  
p,q>~O 

1 
(26) 

for n = 0, 1, 2 ..... where ZI~} is a sum over the corners, with ~/mr being the 
rth corner angle; the tessellation implies that mr is an integer. 

For  nontessellating billiards the situation is much less favorable. 
There, only the coefficients c 1, c 1/2, and Co can be simply determined by 
using the universal asymptotic distribution of eigenvalues given by Weyl <l~ 
(see Appendix); moreover, positive half-integral powers of t can also 
appear. 

We may now apply the general considerations of the previous sections 
to these billiards, since the general conditions implied for their validity are 
met. Since the leading term in O(t) is proportional to lit for any billiard, 
~=  - 1 ;  hence, the defining series for Z(s) always converges for Re s >  1. 
For s ~< 1, a continuation process is needed, and we have yet no theoretical 
clue how the spectral fluctuations actually affect it. In the following section 
we will then study the zeta function Z(s) numerically on selected examples 
of polygonal pseudospherical billiards. 

(It is also of intrinsic interest to study the same questions upon the 
spectra associated with compact surfaces of constant negative curvature, 
where the Selberg trace formula is equally helpful and even simpler; but for 
these particular spectra, the numerical results are not yet sufficiently com- 
plete.) 
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7. N U M E R I C A L  E V I D E N C E  ON 
P S E U D O S P H E R I C A L  B I L L I A R D S  

The billiard used in these calculations is a triangular billiard cut out of 
a surface of constant negative curvature - 1 ,  with corner angles ~/2, ~/3, 
g/8, circumference 

arsinh 2 1/4 + artanh 2 ~/4 _~ 1.9885117 

and area ~/24. (This billiard tessellates a compact surface of constant 
negative curvature of genus two, and thereby the classical motion in it is 
chaotic. (6) 

As explained in the previous section, the numbers kt,, are the eigen- 
values of ( - A - 1 / 4 )  in this triangular domain with Dirichlet boundary 
conditions. 

The numerical study is based on a table of about 1500 consecutive 
eigenvalues computed by Schmit/13/ For orientation, #0-~223.0 and 
#1548 - 154452.9 (the decimal digit is uncertain throughout the table). The 
agreement with the Weyl distribution has already been used to check that 
the precise number of levels has been found. 

The defining series ~/~,7 s for Z(s), s > 1, converges very rapidly. 
For the analytical extension we use Eq. (21), which results in the 

following expression: 

Z(s)= Ji  , m  ,, o /LT"-CM(N, s) (27) 

with 
1 IC_l ~N 

C M ( N , s ) = - - ~  ~ i r ( l t  
--,] 

s-- 1/2 F(1/2) 

+ ~ (2m)[ \d--W/ (28) 
m =  I P = , u N  

where W(u) is the explicit form of the Weyl expression (18), 

C _  1 C 1 /2  , 1 /2  +Co (29) 

and the coefficients ca are computed from Eq. (25); for this particular 
billiard, 

c_1=1/96, c 1/2-0.1402372, Co=577/1152 (30) 

Thus, at s = 1, Z(s) has a simple pole of residue 1/96. The finite part of 
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Fig. h Numerical estimates of the finite parts of Z(1) and Z(1/2) as a function of the number 
of terms in the partial sums. 

Z(s )  at  s = l ,  F P Z ( 1 ) ,  is def ined as the l imit  of  Z(s ) - (1 /96) ( s -1 )  --t. 
F r o m  Eqs. (27) a n d  (28) we o b t a i n  

F P Z ( 1 )  = l im - - -  c_ 1 log #,, (31) 
N~co n 0//'~ 

[ th i s  obv ious ly  gives a gene ra l i za t ion  of  Euler ' s  c o n s t a n t  as def ined by 
Eq. (5)] .  

The  n u m e r i c a l  c o m p u t a t i o n  still converges  rap id ly  to the value 
- 0 . 0 6 4 5 0 9 .  In  fact, on ly  a b o u t  20 te rms  suffice to achieve a n  accuracy  of 

2 . 8 8 8  

I.$88 

�9 4roe  

8 , 8 8 8  

-2.~80 

8 188 288 388 488 $88 688 788 888 888 1888 1188 i~88 1388 1488 1588 

Fig. 2. Numerical estimates of Z(0) as a function of the number of terms in the partial sums. 
This curve also describes the fluctuation at the Nth level in the spectral staircase around the 
Weyl distribution without the constant term; see Eq. (23). 
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99 % (see Fig. 1). The same considerations can be applied at s = 1/2 (the 
location of the next pole), giving 

v P z  =  :lj2 2c_,  2 e F(1/2) log/~/ (32) 
tl O 

The numerical evaluation results in 0.15019. Figure 1 shows, however, that 
the rate of convergence is much diminished as the fluctuations are now 
being amplified. In fact, to reach the same accuracy of 99%, about 70 
terms are now needed. 

As s further decreases, the fluctuations are increasingly amplified and 
for this spectrum convergence ceases at the value s =  0 (Fig. 2), where the 
trace identity (14) gives the value Z(0)=  Co = 577/1152. 

A glance at Fig. 2 shows that these fluctuations are moderate, and 
steady around the correct limiting value. According to Eq. (23), the same 
fluctuations at s = 0 give the difference between the Weyl formula and the 
actual eigenvalue distribution. Thus, on the one hand these deviations are 
large enough to destroy the convergence of the present extension scheme, 
while on the other hand they are small enough to suggest an improved 
method using an additional averaging to obliterate the steady fluctuations. 
A simple local Gaussian averaging can indeed be used (involving around 
50 levels) to find the value 0.5008(2) as an approximation to the correct 
value 577/1152 = 0.500868... (Fig. 3). In the expression of the spectral stair- 
case as a sum of oscillating terms (the periodic orbit sum, see Berry(4)), the 
averaging enhances the slowest oscillations, which thereby become visible 
on the figures. 

{In quantum field theories one also encounters the functional 
determinant, (14) i.e., the renormalized value of the expression [I,,~okt,,, 
which is then defined as the limit of e x p [ - Z ' ( s ) ]  as s ~ 0. In the present 
problem the same method gives 

[-U 1 

Z'(0) = ~v~o~lim ~,,~o ( - l ~  #n) + c l#N(lOg #N-- 1) 

l / 2 ~  2 
- ~  log #N] (33) -~ CI,(I__~ (2 log ~tU -- 4) 1 

which is a generalization of the Stifling formula implied in Eq. (6). A 
Gaussian smoothing then gives the numerical value Z ' (0 )=  -0.22(5); see 
Fig. 4. We stress that while an analytical method exists to find Z(0), no 
such method is known to us to find Z'(0).} 

As we decrease s below zero, the extension scheme with Gaussian 
smoothing becomes increasingly more unstable and more sensitive to the 
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numerical uncertainties in the #,, sequence. The next place where the 
accuracy can be checked against the value obtained through a trace iden- 
tity is at s = - 1 ,  where 

Z (  - 1 ) = 110599/138240 - 0.80005 

However, in view of Fig. 5, we have reached the limit of our capabilities, 
and the method proposed requires a substantial improvement, both in the 
numerical accuracy of the data and in the number of eigenvalues con- 
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Fig. 3. The curve in Fig. 2 smoothed through a convolution with Gaussians of different 
widths; (a) 10 and 20, (b) 30 and 40. The remaining oscillations reflect the contribution of the 
shortest periodic geodesics to the spectral staircase. Note the change in the vertical scale by a 
factor ten compared to Fig. 2. 
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sidered. The preliminary estimate from the figure suggests a value - 2  ~< 
Z ( - 1 ) 4  + 1. This estimate is found by studying the first 300 eigenvalues, 
where it comes about as the difference of two large numbers of the order of 
l0 T . One may well wonder how to reconcile this accuracy with the 
precision with which the individual levels are known. In fact, taking into 
account more eigenvalues makes the error larger, and we must resort to an 
averaging procedure to increase the accuracy. 

If no averaging is done, the error obtained in a partial sum of length N 
is of order Neu, g'N being the error on the Nth level (here less then one 
unit). If we average the partial sum over 2K levels around N, this error is 

0 1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  0 0 0  ? 0 0  1 0 0 0  1 1 0 0  1 2 0 0  1 3 0 0  1 4 0 0  1 5 0 0  

(a) 
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... ~width: 
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~" ~VV I esti ..... ~k ..... 
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" widt 
. ! , : i , , 
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(b) 

Fig. 4. (a) Numerical estimates of Z'(0) as a function of the number of terms in the partial 
sums. (b) The same curve smoothed through a convolution with Gaussians of width 10, 20, 
30, and 100. Note the change in the vertical scale. 
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Fig. 5. (a) Numerical estimates of Z( - 1) as a function of the number of terms in the partial 
sums. The vertical scale is in units of 105! Also shown is the same curve smoothed through a 
convolution with Gaussians of different widths, plotted on different scales: (b) widths 10, 20: 
scale 0 to 3 x 104; (c) widths 30, 40: scale 0 to 3 x 103; (d) widths 90, 100: scale 0 to 90. 
(e) The suggested value between - 2  and 1 obtained from an enlargement of part (d) (scale 0 
to 15). 
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Fig. 5 (continued) 

reduced to N[<e2>/2K]. A more detailed statistical analysis of the data 
indicates that <~2> is small enough to give a sensible convergence to the 
partial sum with an error of 50 % in the result. This analysis is further sup- 
ported by the study of the fluctuations in the partial sums at s = 0, and 
using these estimates to evaluate <e 2> used at s =  - 1 .  However, with the 
present numerical accuracy, we can proceed no further with the analytical 
continuation than s = - I .  

It is interesting to compare this situation with the analytical con- 
tinuation of Riemann's zeta function. There the "spectrum" is completely 
regular, being simply the succession of positive integers, and the complete 
lack of fluctuations allows one to extend the Euler-Maclaurin extension 
scheme to smaller values of s (typically s-~ - 1 0 ) .  
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8. S U M M A R Y  

We studied the convergence of an analytical continuation process 
applied to a zeta function Z(s) to characterize the spectral fluctuations and 
found that this process is made considerably more unstable by the presence 
of fluctuations. For a regular spectrum previous results indicated that value 
of s between - 5  and - 1 0  are easily accessible. For a (chaotic) 
pseudospherical billiard and with similar numerical accuracy we already 
found s ~ - 1  hard to reach. We also gave arguments indicating that for 
the spectra of integrable systems (with Poissonian nearest neighbor gap 
fluctuations) the analytical process is even more unstable. 

A P P E N D I X  

We explain the algebraic connections between the large-p expansion of 
the smoothed eigenvalue counting function W(#) and the small-t expansion 
of the partition function O(t).  

For t small, O(t )  has the expansion given by the integral 

O ( t ) ~  f o e  '" dW(/t) = f o  e-~ d W ( z / t )  (A.1) 

Hence, for small t, only the asymptotic behavior of W(#) for large ~ will be 
of importance. Let this be given as 

W(#) ~ w~,/~ ~'+ c%,/~ ~' + ... (A.2) 

Inserting this into (A.1), we immediately obtain, for small t, 

O(t )  ~ w~,F(1 - c~') t~ '+ w~,F(1 - ~')  t~ '+ . . .  (A.3) 

By comparison with Eq. (10), i.e., 

O ( t ) ~ c ~ t ~  + c~t~ + . . .  

we find that c~'= c~, /~'=/~, etc., and 

w~ = c J F ( 1  - c~), w~ = c~/F(1 - fl), etc. (A.4) 

Let the eigenvalue sequence {2n} refer to the operator ( - A ) ,  where A 
is the Laplace (or Laplace-Beltrami) operator with Dirichlet boundary 
conditions on a bounded two-dimensional domain. Then W(2) is the 
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asymptotic Weyl distribution; its first three terms have a simple and univer- 
sal geometrical meaning, giving 

Area 
c - 1 =  4~ (A.5) 

Circumference 
C--1/2 ~- 8 x/~ (a.6) 

1 
= +-i2~n f f  K d2a (surface Gaussian curvature term) Co 

24rc J d s  (boundary mean curvature term) 

+~--~ ~ ~ -  (corner angle term) (A.7) 

(the precise definitions are given in Ref. 15, where it is shown that Co 
implicitly accounts for the connectivity of the domain as well). 

In the case of a polygonal billiard on a surface of constant negative 
curvature - 1, it is more convenient to study the spectrum {#, -- 2n - 1/4} 
of the operator ( - A -  1/4). This shift of variable alters the coefficient Co to 

Area 2 - ~ ( m ~ )  Co= 48z ~- m r -  (A.8) 

where we have also simplified Eq. (A.7) using K -  - 1  and J~-0, and set 
m r = 7Z/O~ r (an integer if the billiard generates a tessellation). 
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